Módulo IoT Le-ESP32-Board

- Para desarrollo de aplicaciones IoT, servidor WEB simple, estación TCP/IP
- Sistema de control potente y compacto basado en el microcontrolador de 32 bits ESP32 de Espressif
- 160 MHz 32 bits dual core CPU, 520 KB RAM, 4 MB Flash
- Entradas salidas digitales y analógicas
- Pantalla táctil TFT 3.5" color 480 x 320 píxeles. Controladores ILI9488 y AD7843
- Comunicaciones WIFI, Bluetooth, USB, I2C, SPI, CAN Bus
- Conector para Encoder rotatorio o tres pulsadores
- Programación desde PC por puerto USB
- Compatible con los IDE de Espressif, Arduino, PlatformIo, etcs.
- Compatible con las plataformas IoT de Google y Amazon entre otras
- Voltaje de alimentación: 3.5V...12V DC / 100 mA

El módulo está basado en el procesador de 32 bits con wifi ESP32 de Espressif Systems, concretamente usa el módulo ESP32-S, con antena PCB y conector coaxial para antena externa.

El módulo Le-Esp32-Board se alimenta aplicándole un voltaje entre 3.5V y 12V DC en el conector J12, la polaridad está indicada en la placa. El conector micro USB se usa solo para programar el microcontrolador.

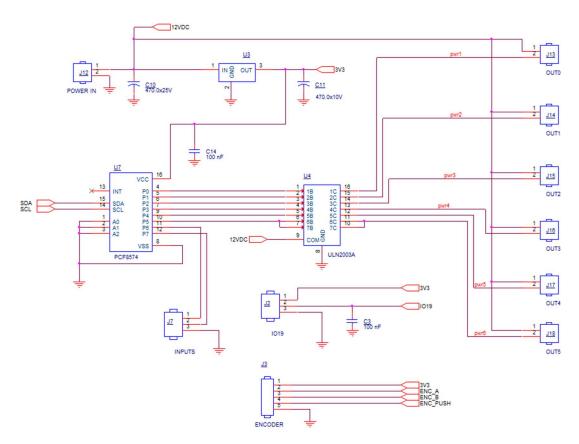



Fig.1. Circuito de alimentación y I/O digitales.

La fig.1 muestra las entradas / salidas digitales disponibles en el módulo. Muchos de los pines del microcontrolador se han destinado al control de los diversos periféricos presentes en la placa como Display TFT, Pantalla táctil, buses comunicaciones, etcs. Por ello, hemos añadido el expansor PCF8574 controlado mediante el bus I2C.

Las seis primeras salidas de U7 se hacen pasar por el arreglo de transistores (U4), y están destinadas al control de Relés y electroválvulas con un voltaje nominal de 12V, y un consumo de hasta 500 mA.

Las dos IO presentes en el conector J7, pueden ser programadas como entrada o salida al igual que las entradas salidas presentes en los conectores J2 y J3.

El conector J3 está destinado a ser usado por un encoder rotatorio, con su alimentación de 3.3V, y las señales A, B y Pulsador Ok.

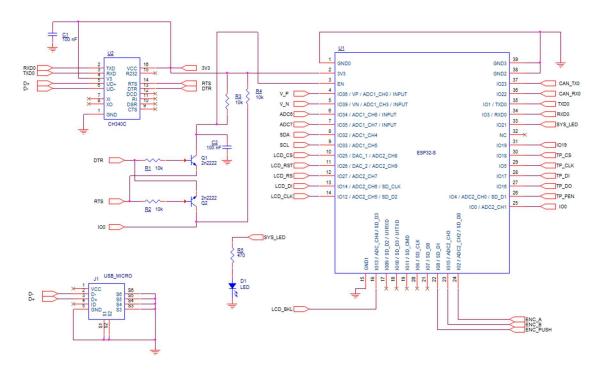


Fig.2. CPU y circuito de programación por USB.

El CI U5 y los transistores Q1 y Q2, permiten la programación automática del microcontrolador ESP32, desde los IDE de Espressif, Arduino y PlatformIO, por lo que para cargar el proyecto solo es necesario alimentar el módulo, y conectarlo al PC mediante un cable USB. En estos entornos de desarrollo, debe elegirse una de las placas ESP32-WROOM, ESP32DEV, NODEMCU-32, etcs.

Tabla uso de recursos del ESP32-S

PIN ESP32	USO	CONECTOR
IO32	I2C SDA	J21-1
IO33	I2C SCL	J21-2
3V3	POWER	J21-3
GND	GND	J21-4
IO21	SYSTEM LED	
IO22	CAN RX (SN65HVD232)	J19-1 (CAN H)
IO23	CAN TX (SN65HVD232)	J19-2 (CAN L)
GND	GND	J19-3
IO9	UART RX / RS485	J20-1 (RS485 A)
IO10	UART TX / RS485	J20-2 (RS485 B)
IO11	UNUSED	
IO25	LCD CS	J8-3
IO26	LCD RST	J8-4
IO27	LCD DC	J8-5
IO14	LCD DI	J8-6
IO12	LCD CLK	J8-7
IO13	LCD BKL	J8-8
IO5	TP CLK	J8-10

IO18	TP CS	J8-11
IO17	TP DI	J8-12
IO16	TP DO	J8-13
IO4	TP PEN	J8-14
IO6	UNUSED	
3V3	ENCODER PWR	J3-1
IO2	ENCODER A	J3-2
IO15	ENCODER B	J3-3
IO8	ENCODER PUSH	J3-4
GND	ENCODER GND	J3-5
3V3	POWER	J2-1
IO19	INPUT / OUTPUT	J2-2
GND	GND	J2-3
IO36 (V_P)	ENTRADA ANALOGICA	J4-1
IO39 (V_N)	ENTRADA ANALOGICA	J4-2
GND	GND	J4-3
IO34 (ADC6)	ENTRADA ANALOGICA	J5-1
GND	GND	J5-2
IO35 (ADC7)	ENTRADA ANALOGICA	J6-1
GND	GND	J6-2

Uso del expansor PCF8574

PCF8574 IO	USO	CONECTOR
	12V DC	J13-1
P0	SALIDA RELE	J13-2
	12V DC	J14-1
P1	SALIDA RELE	J14-2
	12V DC	J15-1
P2	SALIDA RELE	J15-2
	12V DC	J16-1
P3	SALIDA RELE	J16-2
	12V DC	J17-1
P4	SALIDA RELE	J17-2
	12V DC	J18-1
P5	SALIDA RELE	J18-2
P6	INPUT / OUTPUT	J7-1
P7	INPUT / OUTPUT	J7-2
	GND	J7-3

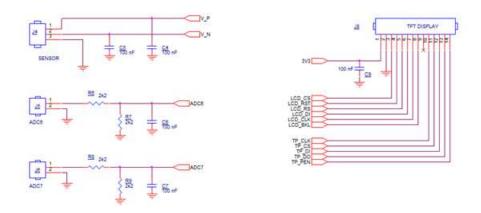


Fig.3. Entradas analógicas, TFT, Touch.

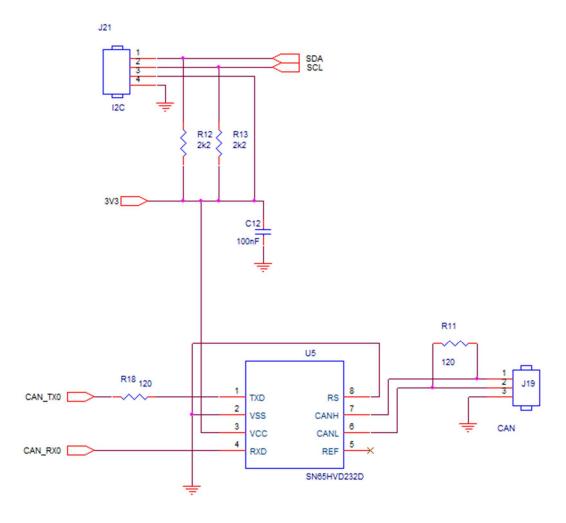
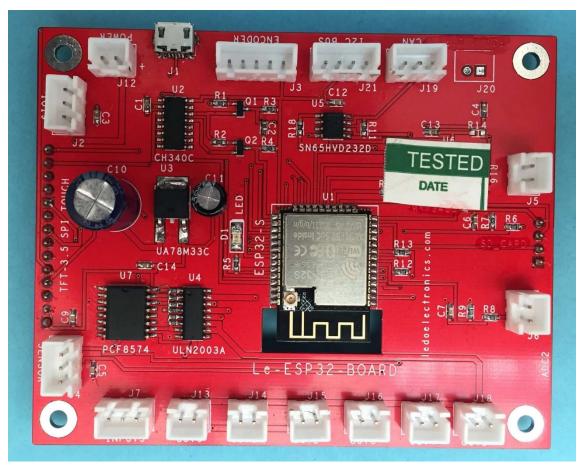
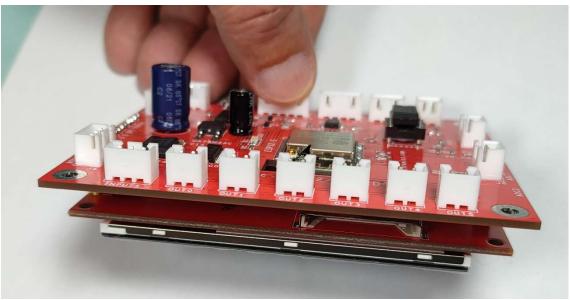




Fig.4. I2C, CAN Bus.

La potencia de cálculo del microcontrolador de 32 bits, la presencia de entradas salidas analógicas y digitales, su gran número de buses de comunicaciones, y la pantalla táctil

gráfica a color hacen de esta placa una opción atractiva para el diseño de sistemas de control y diversas aplicaciones IoT.

Conclusiones:

A diferencia del resto de módulos IoT presentes en el mercado, este se caracteriza por ser compacto y versátil, orientado a ser usado también en equipos reales de control de procesos, cuenta con todo lo necesario para adaptarse a una gama muy diversa de aplicaciones, sin necesidad de añadir otros módulos.